Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617801

RESUMO

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , Imunoterapia , Sistemas de Liberação de Medicamentos , Linfócitos T CD8-Positivos , Neoplasias/tratamento farmacológico
2.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456515

RESUMO

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

3.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525008

RESUMO

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Assuntos
Proteína HMGB1 , Melanoma , Humanos , Camundongos , Animais , Interleucina-12 , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Linfócitos T CD4-Positivos , Trifosfato de Adenosina/metabolismo
4.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383737

RESUMO

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Assuntos
Adenina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno CD47/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373403

RESUMO

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Assuntos
Poluentes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análise , Gases/análise , Poluentes Atmosféricos/análise , Análise Espectral , Fotólise
6.
Respir Physiol Neurobiol ; 322: 104219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242336

RESUMO

Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1ß, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.


Assuntos
Lesão Pulmonar Aguda , Lactatos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Glutationa
7.
ACS Appl Mater Interfaces ; 16(3): 3187-3201, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206677

RESUMO

Cancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-ß) and inflammatory factor (IL-6, IL-1ß, and TNF-α) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-ß leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.


Assuntos
Dor do Câncer , Curcumina , Indóis , Neoplasias , Polímeros , Animais , Humanos , Fator de Crescimento Transformador beta , Carbonato de Cálcio , Dor do Câncer/tratamento farmacológico , Cálcio , Qualidade de Vida , Ropivacaina/uso terapêutico , Neoplasias/tratamento farmacológico , Curcumina/uso terapêutico , Imunoterapia , Microambiente Tumoral
8.
J Environ Sci (China) ; 138: 719-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135434

RESUMO

Peroxyacetyl nitrate (PAN) is an important photochemical pollutant in the troposphere, whereas long-term measurements are scarce in rural areas in North China Plain (NCP), resulting in unclear seasonal variations and sources of PAN in rural NCP. In this study, we conducted a 1-year observation of PAN during 2021-2022 at the rural NCP site. The average concentrations of PAN were 1.10, 0.75, 0.65, and 0.88 ppbv in spring, summer, autumn, and winter, respectively, with a 1-year average of 0.81 ± 0.60 ppbv. Calculations indicate that the loss of PAN through thermal decomposition in summer accounts for 43.2% of the total formed PAN, which is an important reason for the low concentration of PAN in summer. We speculate that since the correlation between PAN and O3 in winter is significantly lower than that in other seasons, the observed regional transport of PAN cannot be ignored in winter. Through budget analysis, regional transport accounted for 12.8% and 55.9% of the observed PAN on the spring and winter pollution days, respectively, which showed that regional transport played key roles during the photochemical pollution of the rural NCP in winter. The potential source contribution function revealed that the transported PAN mainly comes from southern Hebei in spring. In winter, the transported PAN was mainly from Langfang, Hengshui, and southern Beijing. Our findings may aid in understanding PAN variations in different seasons in rural areas and highlight the impact of regional transport on the PAN budget.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Estações do Ano , Material Particulado/análise
9.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140966, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734561

RESUMO

RGLG2, an E3 ubiquitin ligase in Arabidopsis thaliana, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca2+ ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca2+ ions and switches to closed state after Ca2+ ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from integrin α and ß VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca2+ ions in conformational change of VWA domain. In addition, we found that RGLG2closed, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligases/metabolismo , Conformação Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Ligantes , Íons/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
10.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138479

RESUMO

Liver disease accounts for millions of deaths per year all over the world due to complications from cirrhosis and liver injury. In this study, a novel compound, dimethyl bisphenolate (DMB), was synthesized to investigate its role in ameliorating carbon tetrachloride (CCl4)-induced liver injury through the regulation of oxidative stress-related genes. The structure of DMB was confirmed based on its hydrogen spectrum and mass spectrometry. DMB significantly reduced the high levels of ALT, AST, DBIL, TBIL, ALP, and LDH in a dose-dependent manner in the sera of CCl4-treated rats. The protective effects of DMB on biochemical indicators were similar to those of silymarin. The ROS fluorescence intensity increased in CCl4-treated cells but significantly weakened in DMB-treated cells compared with the controls. DMB significantly increased the content of oxidative stress-related GSH, Nrf2, and GCLC dose-dependently but reduced MDA levels in CCl4-treated cells or the liver tissues of CCl4-treated rats. Moreover, DMB treatment decreased the expression levels of P53 and Bax but increased those of Bcl2. In summary, DMB demonstrated protective effects on CCl4-induced liver injury by regulating oxidative stress-related genes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
11.
ACS Appl Bio Mater ; 6(11): 4998-5008, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37880964

RESUMO

Sonodynamic therapy (SDT) and chemotherapy have received great attention as effective methods for tumor treatment. However, the inherent hypoxia of the tumor greatly hinders its therapeutic efficacy. In this work, a tumor microenvironment-responsive biodegradable nanoplatform SiO2-MnO2-PEG-Ce6&DOX (designated as SMPC&D) is fabricated by encapsulating manganese oxide (MnO2) into silica nanoparticles and anchoring poly(ethylene glycol) (PEG) onto the surface for tumor hypoxia relief and delivery, then loaded with sonosensitizer Chlorin e6 (Ce6) and chemotherapeutic drug doxorubicin (DOX) for hypoxic tumor treatment. We evaluated the physicochemical properties of SMPC&D nanoparticles and the tumor therapeutic effects of chemotherapy and SDT under ultrasound stimulation in vitro and in vivo. After endocytosis by tumor cells, highly expressed glutathione (GSH) triggers biodegradation of the nanoplatform and MnO2 catalyzes hydrogen peroxide (H2O2) to generate oxygen (O2), thereby alleviating tumor hypoxia. Depleting GSH and self-supplying O2 effectively improve the SDT efficiency both in vitro and in vivo. Ultrasonic stimulation promoted the release and cellular uptake of chemotherapy drugs. In addition, the relieved hypoxia reduced the efflux of chemotherapy drugs by downregulating the expression of the P-gp protein, which jointly improved the effect of chemotherapy. This study demonstrates that the degradable SMPC&D as a therapeutic agent can achieve efficient chemotherapy and SDT synergistic therapy for hypoxic tumors.


Assuntos
Compostos de Manganês , Oxigênio , Humanos , Peróxido de Hidrogênio , Dióxido de Silício , Óxidos , Hipóxia , Doxorrubicina/uso terapêutico , Glutationa
12.
Int J Mol Med ; 52(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830154

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1408, the microscopic images shown for the light scope images (upper row) and the green fluorescence images (lower row) appeared to be overlapping, such that these images appeared to have been derived from the same original sources even though they were intended to portray the results from differently performed experiments. After having re­examined their figures, the authors realized that this figure was assembled incorrectly. The revised version of Fig. 2, showing the correct data for all four experimental panels, is shown below. Note that the errors made during the assembly of these figures did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 37: 1405­1411, 2016; DOI: 10.3892/ijmm.2016.2539].

13.
Front Immunol ; 14: 1265299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822924

RESUMO

Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.


Assuntos
Antígeno B7-H1 , Leucemia , Humanos , Antígeno B7-H1/metabolismo , Tolerância Imunológica , Imunoterapia/métodos , Leucemia/terapia , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
14.
Int J Nanomedicine ; 18: 4381-4402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551273

RESUMO

Introduction: As the special modality of cell death, immunogenic cell death (ICD) could activate immune response. Phototherapy in combination with chemotherapy (CT) is a particularly efficient tumor ICD inducing method that could overcome the defects of monotherapies. Methods: In this study, new dual stimuli-responsive micelles were designed and prepared for imaging-guided mitochondrion-targeted photothermal/photodynamic/CT combination therapy through inducing ICD. A dual-sensitive methoxy-polyethylene glycol-SS-poly(L-γ-glutamylglutamine)-SS-IR780 (mPEG-SS-PGG-SS-IR780) polymer was synthesized by grafting IR780 with biodegradable di-carboxyl PGG as the backbone, and mPEG-SS-PGG-SS-IR780/paclitaxel micelles (mPEG-SS-PGG-SS-IR780/PTXL MCs) were synthesized by encapsulating PTXL in the hydrophobic core. Results: In-vivo and -vitro results demonstrated that the three-mode combination micelles inhibited tumor growth and enhanced the therapeutic efficacy of immunotherapy. The dual stimuli-responsive mPEG-SS-PGG-SS-IR780/PTXL MCs were able to facilitate tumor cell endocytosis of nanoparticles. They were also capable of promoting micelles disintegration and accelerating PTXL release. The mPEG-SS-PGG-SS-IR780/PTXL MCs induced mitochondrial dysfunction by directly targeting the mitochondria, considering the thermo- and reactive oxygen species (ROS) sensitivity of the mitochondria. Furthermore, the mPEG-SS-PGG-SS-IR780/PTXL MCs could play the diagnostic and therapeutic roles via imaging capabilities. Conclusion: In summary, this study formulated a high-efficiency nanoscale platform with great potential in combined therapy for tumors through ICD.


Assuntos
Micelas , Nanopartículas , Morte Celular Imunogênica , Indóis/química , Fototerapia/métodos , Nanopartículas/química , Mitocôndrias , Linhagem Celular Tumoral
15.
Front Cell Dev Biol ; 11: 1173491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397256

RESUMO

Introduction: Acute myeloid leukemia (AML) is a malignant proliferative disease affecting the bone marrow hematopoietic system and has a poor long-term outcome. Exploring genes that affect the malignant proliferation of AML cells can facilitate the accurate diagnosis and treatment of AML. Studies have confirmed that circular RNA (circRNA) is positively correlated with its linear gene expression. Therefore, by exploring the effect of SH3BGRL3 on the malignant proliferation of leukemia, we further studied the role of circRNA produced by its exon cyclization in the occurrence and development of tumors. Methods: Genes with protein-coding function obtained from the TCGA database. we detected the expression of SH3BGRL3 and circRNA_0010984 by real-time quantitative polymerase chain reaction (qRT-PCR). We synthesized plasmid vectors and carried out cell experiments, including cell proliferation, cell cycle and cell differentiation by cell transfection. We also studied the transfection plasmid vector (PLVX-SHRNA2-PURO) combined with a drug (daunorubicin) to observe the therapeutic effect. The miR-375 binding site of circRNA_0010984 was queried using the circinteractome databases, and the relationship was validated by RNA immunoprecipitation and Dual-luciferase reporter assay. Finally, a protein-protein interaction network was constructed with a STRING database. GO and KEGG functional enrichment identified mRNA-related functions and signaling pathways regulated by miR-375. Results: We identified the related gene SH3BGRL3 in AML and explored the circRNA_0010984 produced by its cyclization. It has a certain effect on the disease progression. In addition, we verified the function of circRNA_0010984. We found that circSH3BGRL3 knockdown specifically inhibited the proliferation of AML cell lines and blocked the cell cycle. We then discussed the related molecular biological mechanisms. CircSH3BGRL3 acts as an endogenous sponge for miR-375 to isolate miR-375 and inhibits its activity, increases the expression of its target YAP1, and ultimately activates the Hippo signaling pathway involved in malignant tumor proliferation. Discussion: We found that SH3BGRL3 and circRNA_0010984 are important to AML. circRNA_0010984 was significantly up-regulated in AML and promoted cell proliferation by regulating miR-375 through molecular sponge action.

16.
Oncol Rep ; 50(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350410

RESUMO

Imatinib resistance in chronic myelogenous leukemia (CML) is a clinical problem. The present study examined the role of N­Myc downstream regulatory gene 3 (NDRG3) in imatinib resistance in CML. Quantitative PCR demonstrated that NDRG3 was highly expressed in patients with CML. Cell Counting Kit (CCK)­8 experiments proved that NDRG3 promoted the proliferation of K562 CML cells and enhanced imatinib resistance. Dual­luciferase assay showed that microRNA (miR)­204­5p inhibited expression of NDRG3 and immunofluorescence experiments showed that NDRG3 promoted accumulation of ß­catenin in the nucleus, thereby increasing the expression of downstream drug resistance­ and cell cycle­associated factors (c­Myc and MDR1). At the same time, cell proliferation experiments showed that ß­catenin played a role in cell proliferation and drug resistance. Co­transfection with small interfering (si)­ß­catenin partially reversed the effect of NDRG3. This finding indicated that NDRG3 plays an important role in imatinib resistance and miR­204­5p and ß­catenin are involved in the biological behavior of NDRG3. The present results provide theoretical support for overcoming drug resistance in CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , beta Catenina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células K562 , Peptídeos e Proteínas de Sinalização Intracelular
17.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808485

RESUMO

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Nanopartículas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Dióxido de Silício/metabolismo , Compostos de Manganês , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Óxidos/farmacologia , Óxidos/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Fototerapia , Regulação Neoplásica da Expressão Gênica
18.
Thorac Cancer ; 14(6): 612-623, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597175

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play crucial roles in the development of various cancers. Here, we aimed to evaluate the roles of miR-138-5p in lung cancer progression and the value of miR-138-5p in lung cancer diagnosis. METHODS: Quantitative real-time PCR was performed to examine the expressions of miR-138-5p and smad nuclear interacting protein 1 (SNIP1) mRNA. The diagnostic value of miR-138-5p was analyzed using receiver operating characteristic (ROC) curve analysis, sensitivity, and specificity. We explored the effect of miR-138-5p on cell proliferation and metastasis by CCK-8, colony formation, wound healing and transwell assays. Western blot was employed to detect the protein expression of SNIP1 and related genes. Lung cancer cell growth was evaluated in vivo using xenograft tumor assay. RESULTS: MiR-138-5p was decreased in the serum of patients with non-small cell lung cancer (NSCLC) and in NSCLC cells and tissues. The area under the ROC curve of serum miR-138-5p in the diagnosis of NSCLC was 0.922. This finding indicates the high diagnostic efficiency for lung cancer. MiR-138-5p suppressed but its inhibitor promoted cell proliferation and migration compared with control treatment in vitro and in vivo. MiR-138-5p directly binds to the 3'-untranslated region of SNIP1 and negatively regulated the expression of SNIP1, thereby inhibiting the expression of cyclin D1 and c-Myc. Moreover, overexpression of SNIP1 rescues the miR-138-5p-mediated inhibition in NSCLC cells. CONCLUSIONS: The results suggested that miR-138-5p suppressed lung cancer cell proliferation and migration by targeting SNIP1. Serum miR-138-5p is a novel and valuable biomarker for NSCLC diagnosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
19.
ACS Appl Mater Interfaces ; 15(3): 3744-3759, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630299

RESUMO

Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence.


Assuntos
Bioengenharia , Imunoterapia , Nanopartículas Multifuncionais , Neoplasias , Humanos , Linhagem Celular Tumoral , Imunoterapia/métodos , Nanopartículas Multifuncionais/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral/imunologia , Vesículas Transportadoras/química , Vesículas Transportadoras/imunologia , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/imunologia , Escherichia coli
20.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36521638

RESUMO

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/química , Compostos de Manganês/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Óxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Resistência a Múltiplos Medicamentos , Oxigênio , Imageamento por Ressonância Magnética , Microambiente Tumoral , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...